

Prime Innovation for Medical Application

4 Channels IBP Module

Zug 4 channels IBP module, referred herein after as M4IBP/M603 module is used for adult, children and neonate invasive blood pressure measurement and shall be integrated in patient monitoring equipment.

measurement and shall be integrated in patient monitoring equipment. The measurement method of M4IBP/M603 IBP module is using fluid to transmit the pressure of measured part to outer sensor, so as to get Systolic and Diastolic Blood Pressure, Mean Arterial Pressure and Pulse Rate by proprietary signal processing method and algorithm. 4 Channels IBP Module M4IBP/M603

Overview —

Zug 4 channels IBP module, referred herein after as M4IBP/M603 module is used for adult, children and neonate invasive blood pressure measurement and shall be integrated in patient monitoring equipment.

The measurement method of M4IBP/M603 IBP module is using fluid to transmit the pressure of measured part to outer sensor. So as to get Systolic and Diastolic Blood Pressure, Mean Arterial Pressure and Pulse Rate by proprietary signal processing method and algorithm.

FEATURES —

- 4 channels IBP monitor with SBP, DBP, MAP and PR
- Response time setting

- Use ZUGMED protocol
- Support OEM, the best choice of multiparameter monitor

APPLICATION —

• IBP function of Patient Monitor

Functions —

MEASUREMENT RESULT

The measurement result contains SBP, MAP, DBP, PR and real time pressure wave.

PATIENT Types

The module provides three kind of measurement depending on the patient type: adult mode, children mode and neonate mode.

CALIBRATION

The module provides continuous real time pressure to allow proper calibration.

HIGH PERFORMANCE

The module high performance includes: real time module status, hardware status, software status, sensor status and alarm information.

Performance —————

Pressure

Range	50 ~ 400 mmHg
Accuracy	±2 mmHg or ±1%
	of the reading (whichever is greater)
Resolution	1 mmHg

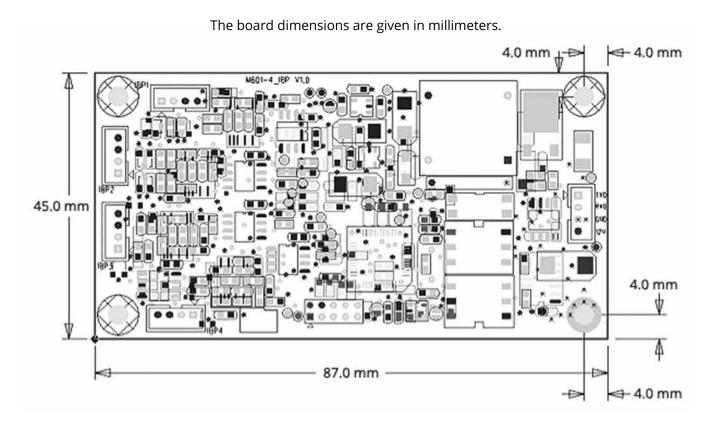
PULSE RATE

Range 35 ~ 250	bpm
Accuracy±3	bpm
Resolution1	bpm

Sensor

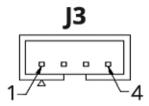
Sensitivity5 µV / mmHg /	V
Impedance	Ω

Standard NO.	Number of standard	Version
IEC60601-2-34	Medical Electrical Equipment – Part1: General Requirements for Safety – 2. Collateral Standard – Electromagnetic compatibility – Requirements and tests	2000


ELECTRICAL CHARACTERISTICS —

Input Voltage	External power supply should provide +12 V DC,
,	Voltage offset range should between ± 10% of voltage full range
Power Consumption	≤ 5 W

	Operating environment	Storage environment
Temperature	10°C to 40°C (50°F to 140°F)	-20°C to +70°C (4°F to 158°F)
Humidity 15% - 90% non-condensing		15% - 90% non-condensing


DIMENSIONS —

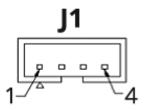
INTERFACES

The interface of power and communication

The connector J3 shown below is used for the purpose of communication and power supply. The pin 1 is actually indicated by an arrow on the PCB.

The table shows the pin assignment of this connector.

Note: TXD pin is used for the data sent from the M4IBP/ M603 module to the host.


Pin No	Signal	Description
1	TXD	UART Sending data from module to host
2	RXD	UART Receiving data from host to the module
3	GND	Ground
4	+12V	Power Supply input 12V DC

Sensor port and IBP channel:

Pin No	Sensor port	IBP channel
1	J1	IBP1
2	J2-	IBP2
3	J4	IBP3
4	J5	IBP4

Transducer Interface

The connector J1 shown below is used for the purpose of IBP signal transmission supply. The pin 1 is actually indicated by an arrow on the PCB.

The table shows the pin assignment of this connector.

Note: The sensor has four ports: J1, J2, J4, J5, same definition of interface.

Pin No	Signal	Description
1	IBP+	Sensor, positive input
2	IBP-	Sensor, Negative input
3	GND	Sensor Ground
4	AVCC	Sensor +5 V voltage input

SENSOR

ZUG will recommend or supply appropriate sensors, which have been validated by our tests and approved by our quality assurance team.

ORDERING

Our 4 Channels IBP module part number is M4IBP/M603.

For ordering our module, please contact directly our sales team by email at **sales@zugmed.com** or refer to our website **www.zugmed.com** for further information.